WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Exponential growth. Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential ...

  3. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. In more advanced mathematics, the partial sums of the harmonic series

  4. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of the earliest and most ...

  5. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    Logistic function. A logistic function or logistic curve is a common S-shaped curve ( sigmoid curve) with the equation. where. is the carrying capacity, the supremum of the values of the function; is the logistic growth rate, the steepness of the curve; and. is the value of the function's midpoint. [1]

  6. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear [disambiguation needed] differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time ...

  7. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively. A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying ...

  8. Hyperbolic growth - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_growth

    Hyperbolic growth. The reciprocal function, exhibiting hyperbolic growth. When a quantity grows towards a singularity under a finite variation (a "finite-time singularity") it is said to undergo hyperbolic growth. [1] More precisely, the reciprocal function has a hyperbola as a graph, and has a singularity at 0, meaning that the limit as is ...

  9. Growth curve (biology) - Wikipedia

    en.wikipedia.org/wiki/Growth_curve_(biology)

    Growth curve (biology) Figure 1: A bi-phasic bacterial growth curve. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass ...