WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]

  3. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    The formula can be read as follows: the rate of change in the population (dN/dt) is equal to growth (rN) that is limited by carrying capacity (1 − N/K). From these basic mathematical principles the discipline of population ecology expands into a field of investigation that queries the demographics of real populations and tests these results ...

  4. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  5. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  6. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    The term is also used more generally to characterize any type of exponential (or, rarely, non-exponential) decay. For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life (in exponential growth) is doubling time.

  7. Bounded growth - Wikipedia

    en.wikipedia.org/wiki/Bounded_growth

    Asymptotically, bounded growth approaches a fixed value. This contrasts with exponential growth, which is constantly increasing at an accelerating rate, and therefore approaches infinity in the limit. Examples of bounded growth include the logistic function, the Gompertz function, and a simple modified exponential function like y = a + be gx. [1]

  8. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    The function also adheres to the sigmoid function, which is the most widely accepted convention of generally detailing a population's growth. Moreover, the function makes use of initial growth rate, which is commonly seen in populations of bacterial and cancer cells, which undergo the log phase and grow rapidly in numbers.

  9. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    Logistic function for the mathematical model used in Population dynamics that adjusts growth rate based on how close it is to the maximum a system can support; Albert Allen Bartlett – a leading proponent of the Malthusian Growth Model; Exogenous growth model – related growth model from economics; Growth theory – related ideas from economics