WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    Under the logistic model, population growth rate between these two limits is most often assumed to be sigmoidal (Figure 1). There is scientific evidence that some populations do grow in a logistic fashion towards a stable equilibrium – a commonly cited example is the logistic growth of yeast. The equation describing logistic growth is:

  3. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    History Original image of a logistic curve, contrasted with what Verhulst called a "logarithmic curve" (in modern terms, "exponential curve") The logistic function was introduced in a series of three papers by Pierre François Verhulst between 1838 and 1847, who devised it as a model of population growth by adjusting the exponential growth model, under the guidance of Adolphe Quetelet.

  4. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    The r = 4 case of the logistic map is a nonlinear transformation of both the bit-shift map and the μ = 2 case of the tent map. If r > 4, this leads to negative population sizes. (This problem does not appear in the older Ricker model, which also exhibits chaotic dynamics.)

  5. Population model - Wikipedia

    en.wikipedia.org/wiki/Population_model

    One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...

  6. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    The logistic growth curve depicts how population growth rate and carrying capacity are inter-connected. As illustrated in the logistic growth curve model, when the population size is small, the population increases exponentially. However, as population size nears carrying capacity, the growth decreases and reaches zero at K.

  7. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  8. Pierre François Verhulst - Wikipedia

    en.wikipedia.org/wiki/Pierre_François_Verhulst

    Pierre François Verhulst. Pierre François Verhulst (28 October 1804, in Brussels – 15 February 1849, in Brussels) was a Belgian mathematician and a doctor in number theory from the University of Ghent in 1825. He is best known for the logistic growth model.

  9. Von Bertalanffy function - Wikipedia

    en.wikipedia.org/wiki/Von_Bertalanffy_function

    The von Bertalanffy growth function ( VBGF ), or von Bertalanffy curve, is a type of growth curve for a time series and is named after Ludwig von Bertalanffy. It is a special case of the generalised logistic function. The growth curve is used to model mean length from age in animals. [1] The function is commonly applied in ecology to model fish ...