WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Big O notation - Wikipedia

    en.wikipedia.org/wiki/Big_O_notation

    For example, let f(x) = 6x 4 − 2x 3 + 5, and suppose we wish to simplify this function, using O notation, to describe its growth rate as x approaches infinity. This function is the sum of three terms: 6x 4, −2x 3, and 5. Of these three terms, the one with the highest growth rate is the one with the largest exponent as a function of x ...

  4. Leslie matrix - Wikipedia

    en.wikipedia.org/wiki/Leslie_matrix

    The Leslie matrix is a discrete, age-structured model of population growth that is very popular in population ecology named after Patrick H. Leslie. [1] [2] The Leslie matrix (also called the Leslie model) is one of the most well-known ways to describe the growth of populations (and their projected age distribution), in which a population is closed to migration, growing in an unlimited ...

  5. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Its growth rate is similar to , but slower by an exponential factor. One way of approaching this result is by taking the natural logarithm of the factorial, which turns its product formula into a sum, and then estimating the sum by an integral: ln ⁡ n ! = ∑ x = 1 n ln ⁡ x ≈ ∫ 1 n ln ⁡ x d x = n ln ⁡ n − n + 1. {\displaystyle \ln ...

  6. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series

  7. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off. [7] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms. [6]

  8. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    If the absolute value of the common ratio is smaller than 1, the terms will decrease in magnitude and approach zero via an exponential decay. If the absolute value of the common ratio is greater than 1, the terms will increase in magnitude and approach infinity via an exponential growth. If the absolute value of the common ratio equals 1, the ...

  9. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...