WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    Reaching carrying capacity through a logistic growth curve The difference between the birth rate and the death rate is the natural increase . If the population of a given organism is below the carrying capacity of a given environment, this environment could support a positive natural increase; should it find itself above that threshold the ...

  3. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    A logistic function or logistic curve is a common S-shaped curve ( sigmoid curve) with the equation. where. , the value of the function's midpoint; , the supremum of the values of the function; , the logistic growth rate or steepness of the curve. [1] Standard logistic function where. For values of in the domain of real numbers from to , the S ...

  4. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    At , a slightly higher harvest rate, however there is only one equilibrium point (at ), which is the population size that produces the maximum growth rate. With logistic growth, this point, called the maximum sustainable yield, is where the population size is half the carrying capacity (or =). The maximum sustainable yield is the largest yield ...

  5. Population ecology - Wikipedia

    en.wikipedia.org/wiki/Population_ecology

    This growth is likely due to reproduction within their population, as opposed to the addition of more birds from South America (Van Bael & Prudet-Jones 1996). When the per capita rate of increase decreases as the population increases towards the maximum limit, or carrying capacity, the graph shows logistic growth.

  6. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  7. Ricker model - Wikipedia

    en.wikipedia.org/wiki/Ricker_model

    Ricker model. The Ricker model, named after Bill Ricker, is a classic discrete population model which gives the expected number N t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, [1] Here r is interpreted as an intrinsic growth rate and k as the carrying capacity of the ...

  8. Von Bertalanffy function - Wikipedia

    en.wikipedia.org/wiki/Von_Bertalanffy_function

    The von Bertalanffy growth function ( VBGF ), or von Bertalanffy curve, is a type of growth curve for a time series and is named after Ludwig von Bertalanffy. It is a special case of the generalised logistic function. The growth curve is used to model mean length from age in animals. [1] The function is commonly applied in ecology to model fish ...

  9. Population dynamics of fisheries - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics_of...

    This logistic model of growth is produced by a population introduced to a new habitat or with very poor numbers going through a lag phase of slow growth at first. Once it reaches a foothold population it will go through a rapid growth rate that will start to level off once the species approaches carrying capacity.