WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    Carrying capacity. The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as the environment 's maximal load, [clarification needed] which in population ...

  3. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    Population dynamics has traditionally been the dominant branch of mathematical biology, which has a history of more than 220 years, [1] although over the last century the scope of mathematical biology has greatly expanded. [citation needed] The beginning of population dynamics is widely regarded as the work of Malthus, formulated as the ...

  4. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  5. I = PAT - Wikipedia

    en.wikipedia.org/wiki/I_=_PAT

    I = (PAT) is the mathematical notation of a formula put forward to describe the impact of human activity on the environment . The expression equates human impact on the environment to a function of three factors: population (P), affluence (A) and technology (T). It is similar in form to the Kaya identity which applies specifically to emissions ...

  6. Biodiversity - Wikipedia

    en.wikipedia.org/wiki/Biodiversity

    The existence of a global carrying capacity, limiting the amount of life that can live at once, is debated, as is the question of whether such a limit would also cap the number of species. While records of life in the sea show a logistic pattern of growth, life on land (insects, plants and tetrapods) shows an exponential rise in diversity. [19]

  7. Adaptive capacity - Wikipedia

    en.wikipedia.org/wiki/Adaptive_capacity

    Adaptive capacity relates to the capacity of systems, institutions, humans and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences. [1] In the context of ecosystems, adaptive capacity is determined by genetic diversity of species, biodiversity of particular ecosystems in specific ...

  8. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear [disambiguation needed] differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time ...

  9. Biocapacity - Wikipedia

    en.wikipedia.org/wiki/Biocapacity

    Global biocapacity' is a term sometimes used to describe the total capacity of an ecosystem to support various continuous activity and changes. When the ecological footprint of a population exceeds the biocapacity of the environment it lives in, this is called an 'biocapacity deficit'. Such a deficit comes from three sources: overusing one's ...