WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    Using these techniques, Malthus' population principle of growth was later transformed into a mathematical model known as the logistic equation: = (), where N is the population size, r is the intrinsic rate of natural increase, and K is the carrying capacity of the population. The formula can be read as follows: the rate of change in the ...

  3. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    P 0 = P(0) is the initial population size, r = the population growth rate, which Ronald Fisher called the Malthusian parameter of population growth in The Genetical Theory of Natural Selection, [2] and Alfred J. Lotka called the intrinsic rate of increase, [3] [4] t = time. The model can also be written in the form of a differential equation:

  4. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    With these two terms the prey equation above can be interpreted as follows: the rate of change of the prey's population is given by its own growth rate minus the rate at which it is preyed upon. The term δxy represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used, as ...

  5. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    The Gompertz curve or Gompertz function is a type of mathematical model for a time series, named after Benjamin Gompertz (1779–1865). It is a sigmoid function which describes growth as being slowest at the start and end of a given time period. The right-side or future value asymptote of the function is approached much more gradually by the ...

  6. Population model - Wikipedia

    en.wikipedia.org/wiki/Population_model

    One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...

  7. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with the equation. where. is the carrying capacity, the supremum of the values of the function; is the logistic growth rate, the steepness of the curve; and. is the value of the function's midpoint.

  8. Leslie matrix - Wikipedia

    en.wikipedia.org/wiki/Leslie_matrix

    There is a generalization of the population growth rate to when a Leslie matrix has random elements which may be correlated. [6] When characterizing the disorder, or uncertainties, in vital parameters; a perturbative formalism has to be used to deal with linear non-negative random matrix difference equations.

  9. Euler–Lotka equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lotka_equation

    The Euler–Lotka equation, derived and discussed below, is often attributed to either of its origins: Euler, who derived a special form in 1760, or Lotka, who derived a more general continuous version. The equation in discrete time is given by. where is the discrete growth rate, ℓ (a) is the fraction of individuals surviving to age a and b ...