WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth. Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential growth is intuitive from the fact that each organism can divide and ...

  3. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time ...

  4. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life. As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years.

  5. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear [disambiguation needed] differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time ...

  6. Wheat and chessboard problem - Wikipedia

    en.wikipedia.org/wiki/Wheat_and_chessboard_problem

    The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of exponential and geometric sequences. It can also be used to illustrate sigma notation. When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation ...

  7. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life (symbol t½) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential (or, rarely ...

  8. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of the earliest and most ...

  9. Paley–Wiener theorem - Wikipedia

    en.wikipedia.org/wiki/Paley–Wiener_theorem

    In mathematics, a Paley–Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform. It is named after Raymond Paley (1907–1933) and Norbert Wiener (1894–1964) who, in 1934, introduced various versions of the theorem. [1] The original theorems did not use ...