WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    Definition. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stressstrain curves. The stress and strain can be normal, shear, or mixture, and can also can be uniaxial, biaxial, or multiaxial, even change with time. The form of deformation can be compression ...

  3. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_analysis

    Stressstrain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  4. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    Stress and strain. The stress-strain constitutive relation for linear materials is commonly known as Hooke's law. In its simplest form, the law defines the spring constant (or elasticity constant) k in a scalar equation, stating the tensile/compressive force is proportional to the extended (or contracted) displacement x:

  5. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    Ramberg–Osgood relationship. The Ramberg–Osgood equation was created to describe the non linear relationship between stress and strain —that is, the stressstrain curve —in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic ...

  6. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo ...

  7. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The modulus of elasticity can be used to determine the stressstrain relationship in the linear-elastic portion of the stressstrain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stressstrain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...

  8. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [1] [2] Other names are elastic modulus tensor and stiffness tensor. Common symbols include and . The defining equation can be written as. where and are the components of the Cauchy stress tensor and infinitesimal strain tensor, and ...

  9. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    Yield (engineering) In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed.