WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Oxidative phosphorylation is made up of two closely connected components: the electron transport chain and chemiosmosis. The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O 2 to power the ATP synthase.

  3. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain ( ETC [1]) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The NADH pulls the enzyme's electrons to send through the electron transport chain. The electron transport chain pulls H + ions through the chain. From the electron transport chain, the released hydrogen ions make ADP for an result of 32 ATP. Lastly, ATP leaves through the ATP channel and out of the mitochondria.

  5. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    Adenosine diphosphate ( ADP ), also known as adenosine pyrophosphate ( APP ), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose.

  6. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    It involves substrate-level phosphorylation in the absence of a respiratory electron transport chain. The equation for the reaction of glucose to form lactic acid is: C 6 H 12 O 6 + 2 ADP + 2 P i → 2 CH 3 CH(OH)COOH + 2 ATP + 2 H 2 O. Anaerobic respiration is respiration in the absence of O 2. Prokaryotes can utilize a variety of electron ...

  7. P/O ratio - Wikipedia

    en.wikipedia.org/wiki/P/O_ratio

    P/O ratio. The phosphate/oxygen ratio, or P/O ratio, refers to the amount of ATP produced from the movement of two electrons through a defined electron transport chain, terminated by reduction of an oxygen atom. [1]

  8. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic phosphate.

  9. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    ATP synthase is an enzyme that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (P i ). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is: ADP + P i + 2H +out ⇌ ATP + H 2 O + 2H +in.