WOW.com Web Search

  1. Ads

    related to: how to solve exponential decay equations with steps
  2. education.com has been visited by 100K+ users in the past month

    • Educational Songs

      Explore catchy, kid-friendly tunes

      to get your kids excited to learn.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • 20,000+ Worksheets

      Browse by grade or topic to find

      the perfect printable worksheet.

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay. The notation λ for the decay constant is a remnant of the usual notation for an eigenvalue .

  3. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. [1] [note 1] The time constant is the main characteristic unit of a first-order LTI system. In the time domain, the usual choice to ...

  4. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  5. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Exponential growth. Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential ...

  6. Leapfrog integration - Wikipedia

    en.wikipedia.org/wiki/Leapfrog_integration

    In numerical analysis, leapfrog integration is a method for numerically integrating differential equations of the form. or equivalently of the form particularly in the case of a dynamical system of classical mechanics. Comparison of Euler's and Leapfrog integration energy conserving properties for N bodies orbiting a point source mass.

  7. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life (symbol t½) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential (or, rarely ...

  8. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively. A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying ...

  9. Stiff equation - Wikipedia

    en.wikipedia.org/wiki/Stiff_equation

    Stiff equation. In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms ...

  1. Ads

    related to: how to solve exponential decay equations with steps