WOW.com Web Search

  1. Ads

    related to: how to solve exponential decay equations with solution

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    Exponential decay. A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.

  3. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    Matrix exponential. In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

  4. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  5. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    Matrix differential equation. A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to ...

  6. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life (symbol t½) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential (or, rarely ...

  7. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of ...

  8. WKB approximation - Wikipedia

    en.wikipedia.org/wiki/WKB_approximation

    Generally, WKB theory is a method for approximating the solution of a differential equation whose highest derivative is multiplied by a small parameter ε. The method of approximation is as follows. For a differential equation assume a solution of the form of an asymptotic series expansion in the limit δ → 0. The asymptotic scaling of δ in ...

  9. Delay differential equation - Wikipedia

    en.wikipedia.org/wiki/Delay_differential_equation

    List. v. t. e. In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations ...

  1. Ads

    related to: how to solve exponential decay equations with solution