WOW.com Web Search

  1. Ad

    related to: stress strain equation

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    The stressstrain curve for a ductile material can be approximated using the Ramberg–Osgood equation. This equation is straightforward to implement, and only requires the material's yield strength, ultimate strength, elastic modulus, and percent elongation.

  3. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_analysis

    Stressstrain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  4. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo ...

  5. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain —that is, the stressstrain curve —in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  7. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    where is the Cauchy stress tensor, is the infinitesimal strain tensor, is the displacement vector, is the fourth-order stiffness tensor, is the body force per unit volume, is the mass density, represents the nabla operator, () represents a transpose, () ¨ represents the second material derivative with respect to time, and : = is the inner product of two second-order tensors (summation over ...

  8. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law. It deals with the case of linear elastic materials. Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was ...

  9. Flow stress - Wikipedia

    en.wikipedia.org/wiki/Flow_stress

    Flow stress. In materials science the flow stress, typically denoted as Yf (or ), is defined as the instantaneous value of stress required to continue plastically deforming a material - to keep it flowing. It is most commonly, though not exclusively, used in reference to metals. On a stress-strain curve, the flow stress can be found anywhere ...

  1. Ad

    related to: stress strain equation