WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as the environment 's maximal load, [clarification needed] which in population ecology corresponds to ...

  3. Intraspecific competition - Wikipedia

    en.wikipedia.org/wiki/Intraspecific_competition

    Population growth against time in a population growing logistically. The steepest parts of the graph are where the population growth is most rapid. The logistic growth equation is an effective tool for modelling intraspecific competition despite its simplicity, and has been used to model many real biological systems.

  4. Allee effect - Wikipedia

    en.wikipedia.org/wiki/Allee_effect

    Allee effects are classified by the nature of density dependence at low densities. If the population shrinks for low densities, there is a strong Allee effect. If the proliferation rate is positive and increasing then there is a weak Allee effect. The null hypothesis is that proliferation rates are positive but decreasing at low densities.

  5. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    Logistic function. A logistic function or logistic curve is a common S-shaped curve ( sigmoid curve) with the equation. where. is the carrying capacity, the supremum of the values of the function; is the logistic growth rate, the steepness of the curve; and. is the value of the function's midpoint. [1]

  6. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  7. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    At , a slightly higher harvest rate, however there is only one equilibrium point (at ), which is the population size that produces the maximum growth rate. With logistic growth, this point, called the maximum sustainable yield, is where the population size is half the carrying capacity (or =). The maximum sustainable yield is the largest yield ...

  8. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    Population dynamics has traditionally been the dominant branch of mathematical biology, which has a history of more than 220 years, [1] although over the last century the scope of mathematical biology has greatly expanded. [citation needed] The beginning of population dynamics is widely regarded as the work of Malthus, formulated as the ...

  9. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth. Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential growth is intuitive from the fact that each organism can divide and ...