WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    The general form of a linear ordinary differential equation of order 1, after dividing out the coefficient of y′ (x), is: If the equation is homogeneous, i.e. g(x) = 0, one may rewrite and integrate: where k is an arbitrary constant of integration and is any antiderivative of f.

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The same illustration for The midpoint method converges faster than the Euler method, as . Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to ...

  4. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    e. In mathematics, an ordinary differential equation ( ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown (s) consists of one (or more) function (s) and involves the derivatives of those functions. [1] The term "ordinary" is used in contrast with partial differential equations ...

  5. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    t. e. In mathematics, the exponential response formula (ERF), also known as exponential response and complex replacement, is a method used to find a particular solution of a non-homogeneous linear ordinary differential equation of any order. [1] [2] The exponential response formula is applicable to non-homogeneous linear ordinary differential ...

  6. General linear methods - Wikipedia

    en.wikipedia.org/wiki/General_linear_methods

    General linear methods. General linear methods ( GLM s) are a large class of numerical methods used to obtain numerical solutions to ordinary differential equations. They include multistage Runge–Kutta methods that use intermediate collocation points, as well as linear multistep methods that save a finite time history of the solution.

  7. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral. Suppose we have a constant coefficient, m-th order inhomogeneous ordinary differential equation.

  8. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution is known and a second linearly independent solution is desired. The method also applies to n -th order equations. In this case the ansatz will yield an ( n −1)-th order ...

  9. Adomian decomposition method - Wikipedia

    en.wikipedia.org/wiki/Adomian_decomposition_method

    The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations. The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. [1] It is further extensible to stochastic systems by using the ...