WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    A logistic function or logistic curve is a common S-shaped curve ( sigmoid curve) with the equation. where. , the value of the function's midpoint; , the supremum of the values of the function; , the logistic growth rate or steepness of the curve. [1] Standard logistic function where. For values of in the domain of real numbers from to , the S ...

  3. Allee effect - Wikipedia

    en.wikipedia.org/wiki/Allee_effect

    Allee effects are classified by the nature of density dependence at low densities. If the population shrinks for low densities, there is a strong Allee effect. If the proliferation rate is positive and increasing then there is a weak Allee effect. The null hypothesis is that proliferation rates are positive but decreasing at low densities.

  4. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    Lotka–Volterra equations. The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through ...

  5. Intraspecific competition - Wikipedia

    en.wikipedia.org/wiki/Intraspecific_competition

    The logistic growth equation is an effective tool for modelling intraspecific competition despite its simplicity, and has been used to model many real biological systems. At low population densities, N(t) is much smaller than K and so the main determinant for population growth is just the per capita growth rate.

  6. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  7. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth. Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential growth is intuitive from the fact that each organism can divide and ...

  8. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    Population dynamics has traditionally been the dominant branch of mathematical biology, which has a history of more than 220 years, [1] although over the last century the scope of mathematical biology has greatly expanded. [citation needed] The beginning of population dynamics is widely regarded as the work of Malthus, formulated as the ...

  9. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    Under the logistic model, population growth rate between these two limits is most often assumed to be sigmoidal (Figure 1). There is scientific evidence that some populations do grow in a logistic fashion towards a stable equilibrium – a commonly cited example is the logistic growth of yeast. The equation describing logistic growth is: