WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    History Original image of a logistic curve, contrasted with what Verhulst called a "logarithmic curve" (in modern terms, "exponential curve") The logistic function was introduced in a series of three papers by Pierre François Verhulst between 1838 and 1847, who devised it as a model of population growth by adjusting the exponential growth model, under the guidance of Adolphe Quetelet.

  3. Population model - Wikipedia

    en.wikipedia.org/wiki/Population_model

    One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...

  4. Population growth - Wikipedia

    en.wikipedia.org/wiki/Population_growth

    Population growth is the increase in the number of people in a population or dispersed group. Actual global human population growth amounts to around 83 million annually, or 1.1% per year. [2] The global population has grown from 1 billion in 1800 to 7.9 billion in 2020. [3] The UN projected population to keep growing, and estimates have put ...

  5. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...

  6. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    Under the logistic model, population growth rate between these two limits is most often assumed to be sigmoidal (Figure 1). There is scientific evidence that some populations do grow in a logistic fashion towards a stable equilibrium – a commonly cited example is the logistic growth of yeast. The equation describing logistic growth is:

  7. Allee effect - Wikipedia

    en.wikipedia.org/wiki/Allee_effect

    Allee effects are classified by the nature of density dependence at low densities. If the population shrinks for low densities, there is a strong Allee effect. If the proliferation rate is positive and increasing then there is a weak Allee effect. The null hypothesis is that proliferation rates are positive but decreasing at low densities.

  8. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of the earliest and most ...

  9. Pierre François Verhulst - Wikipedia

    en.wikipedia.org/wiki/Pierre_François_Verhulst

    Pierre François Verhulst. Pierre François Verhulst (28 October 1804, in Brussels – 15 February 1849, in Brussels) was a Belgian mathematician and a doctor in number theory from the University of Ghent in 1825. He is best known for the logistic growth model.