WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    In population ecology and economics, optimum sustainable yield is the level of effort (LOE) that maximizes the difference between total revenue and total cost. Or, where marginal revenue equals marginal cost. This level of effort maximizes the economic profit, or rent, of the resource being utilized. It usually corresponds to an effort level ...

  3. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    For the competition equations, the logistic equation is the basis. The logistic population model, when used by ecologists often takes the following form: = (). Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity.

  4. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    Original image of a logistic curve, contrasted with what Verhulst called a "logarithmic curve" (in modern terms, "exponential curve") The logistic function was introduced in a series of three papers by Pierre François Verhulst between 1838 and 1847, who devised it as a model of population growth by adjusting the exponential growth model, under the guidance of Adolphe Quetelet. [5]

  5. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off. [7] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms. [6]

  6. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    Logistic map. The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often referred to as an archetypal example of how complex, chaotic behaviour can arise from very simple nonlinear dynamical equations.

  7. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    The logistic growth curve depicts how population growth rate and carrying capacity are inter-connected. As illustrated in the logistic growth curve model, when the population size is small, the population increases exponentially. However, as population size nears carrying capacity, the growth decreases and reaches zero at K. [20]

  8. Population ecology - Wikipedia

    en.wikipedia.org/wiki/Population_ecology

    Population size can be influenced by the per capita population growth rate (rate at which the population size changes per individual in the population.) Births, deaths, emigration, and immigration rates all play a significant role in growth rate. The maximum per capita growth rate for a population is known as the intrinsic rate of increase.

  9. Population model - Wikipedia

    en.wikipedia.org/wiki/Population_model

    One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...