WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    At first, the population growth rate is fast, but it begins to slow as the population grows until it levels off to the maximum growth rate, after which it begins to decrease (figure 2). The equation for figure 2 is the differential of equation 1.1 ( Verhulst's 1838 growth model ): [13]

  3. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    Logistic function. A logistic function or logistic curve is a common S-shaped curve ( sigmoid curve) with the equation. where. is the carrying capacity, the supremum of the values of the function; is the logistic growth rate, the steepness of the curve; and. is the value of the function's midpoint. [1]

  4. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    This is a graph of population change utilizing the logistic curve model. When the population is above the carrying capacity it decreases, and when it is below the carrying capacity it increases. When the Verhulst model is plotted into a graph, the population change over time takes the form of a sigmoid curve, reaching its highest level at K ...

  5. Population dynamics of fisheries - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics_of...

    This logistic model of growth is produced by a population introduced to a new habitat or with very poor numbers going through a lag phase of slow growth at first. Once it reaches a foothold population it will go through a rapid growth rate that will start to level off once the species approaches carrying capacity.

  6. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of the earliest and most ...

  7. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  8. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...

  9. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    The r = 4 case of the logistic map is a nonlinear transformation of both the bit-shift map and the μ = 2 case of the tent map. If r > 4, this leads to negative population sizes. (This problem does not appear in the older Ricker model, which also exhibits chaotic dynamics.)