WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  3. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    Carrying capacity. The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available. The carrying capacity is defined as the environment 's maximal load, [clarification needed] which in population ...

  4. Population ecology - Wikipedia

    en.wikipedia.org/wiki/Population_ecology

    In a population, carrying capacity is known as the maximum population size of the species that the environment can sustain, which is determined by resources available. In many classic population models, r is represented as the intrinsic growth rate, where K is the carrying capacity, and N0 is the initial population size.

  5. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth. Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential growth is intuitive from the fact that each organism can divide and ...

  6. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear [disambiguation needed] differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time ...

  7. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    Population dynamics has traditionally been the dominant branch of mathematical biology, which has a history of more than 220 years, [1] although over the last century the scope of mathematical biology has greatly expanded. [citation needed] The beginning of population dynamics is widely regarded as the work of Malthus, formulated as the ...

  8. Intraspecific competition - Wikipedia

    en.wikipedia.org/wiki/Intraspecific_competition

    Intraspecific competition is an interaction in population ecology, whereby members of the same species compete for limited resources. This leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce. [1] By contrast, interspecific competition occurs when members of different species ...

  9. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    At intermediate population densities, also represented by half the carrying capacity, individuals are able to breed to their maximum rate. At this point, called the maximum sustainable yield, there is a surplus of individuals that can be harvested because growth of the population is at its maximum point due to the large number of reproducing ...