WOW.com Web Search

  1. Ad

    related to: differential equations calculator step by

Search results

  1. Results from the WOW.Com Content Network
  2. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The conclusion of this computation is that =.The exact solution of the differential equation is () =, so () =.Although the approximation of the Euler method was not very precise in this specific case, particularly due to a large value step size , its behaviour is qualitatively correct as the figure shows.

  3. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    An ordinary differential equation ( ODE) is an equation containing an unknown function of one real or complex variable x, its derivatives, and some given functions of x. The unknown function is generally represented by a variable (often denoted y ), which, therefore, depends on x. Thus x is often called the independent variable of the equation.

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).

  5. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations. It is named after Leonhard Euler and Gisiro Maruyama.

  6. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    Heun's method. In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2] ), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given ...

  7. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    In mathematics, an ordinary differential equation ( ODE) is a differential equation (DE) dependent on only a single independent variable. As with other DE, its unknown (s) consists of one (or more) function (s) and involves the derivatives of those functions. [1] The term "ordinary" is used in contrast with partial differential equations which ...

  8. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    Cauchy–Euler equation. In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential ...

  9. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  1. Ad

    related to: differential equations calculator step by