WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    Exponential decay. A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant ( λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.

  3. Particle decay - Wikipedia

    en.wikipedia.org/wiki/Particle_decay

    Particle decay. In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state) must each be less massive than the original, although the total mass of the system must be conserved.

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay is a random process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. [2] [3] [4] However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as half-life. The half-lives of radioactive atoms have a huge ...

  5. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life is constant over the lifetime of an exponentially decaying quantity, and it is a characteristic unit for the exponential decay equation. The accompanying table shows the reduction of a quantity as a function of the number of half-lives elapsed.

  6. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  7. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    In the study of heat transfer, Newton's law of cooling is a physical law which states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is ...

  8. Spontaneous emission - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_emission

    where is the initial number of light sources in the excited state, is the time and is the radiative decay rate of the transition. The number of excited states thus decays exponentially with time, similar to radioactive decay. After one lifetime, the number of excited states decays to 36.8% of its original value ( -time).

  9. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    That is, the attenuation parameter α represents the rate of exponential decay of the oscillations (that is, of the output after an impulse) into the system. A higher quality factor implies a lower attenuation rate, and so high- Q systems oscillate for many cycles.