WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Half-life (symbol t½) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential (or, rarely ...

  3. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    where the final substitution, N 0 = e C, is obtained by evaluating the equation at t = 0, as N 0 is defined as being the quantity at t = 0. This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay.

  4. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    Rate equation. In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only ...

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.

  6. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    As useful rules of thumb, a first-order reaction with a rate constant of 10 −4 s −1 will have a half-life (t 1/2) of approximately 2 hours. For a one-step process taking place at room temperature, the corresponding Gibbs free energy of activation (ΔG ‡) is approximately 23 kcal/mol.

  7. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  8. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  9. Plateau principle - Wikipedia

    en.wikipedia.org/wiki/Plateau_Principle

    Plateau principle. The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). [1] The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics. It applies whenever a drug or nutrient is infused or ingested at ...