WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. Most commonly apparent in species that reproduce quickly and asexually, like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.

  3. Bacterial growth - Wikipedia

    en.wikipedia.org/wiki/Bacterial_growth

    Bacterial growth. Growth is shown as L = log (numbers) where numbers is the number of colony forming units per ml, versus T (time.) Bacterial growth is proliferation of bacterium into two daughter cells, in a process called binary fission. Providing no mutation event occurs, the resulting daughter cells are genetically identical to the original ...

  4. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time ...

  5. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    Growth rates of 2 bacterial species will differ by unexpected orders of magnitude if the doubling times of the 2 species differ by even as little as 10 minutes. In eukaryotes such as animals, fungi, plants, and protists, doubling times are much longer than in bacteria. This reduces the growth rates of eukaryotes in comparison to Bacteria.

  6. Bacteria - Wikipedia

    en.wikipedia.org/wiki/Bacteria

    [120] [121] The second phase of growth is the logarithmic phase, also known as the exponential phase. The log phase is marked by rapid exponential growth. The rate at which cells grow during this phase is known as the growth rate (k), and the time it takes the cells to double is known as the generation time (g). During log phase, nutrients are ...

  7. Monod equation - Wikipedia

    en.wikipedia.org/wiki/Monod_equation

    The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting nutrient. [1][2][3 ...

  8. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The predator's parameters, γ, δ, respectively describe the predator's per capita death rate, and the effect of the presence of prey on the predator's growth rate. All parameters are positive and real. The solution of the differential equations is deterministic and continuous. This, in turn, implies that the generations of both the predator ...

  9. E. coli long-term evolution experiment - Wikipedia

    en.wikipedia.org/wiki/E._coli_long-term...

    The 12 E. coli LTEE populations on June 25, 2008. [1]The E. coli long-term evolution experiment (LTEE) is an ongoing study in experimental evolution begun by Richard Lenski at the University of California, Irvine, carried on by Lenski and colleagues at Michigan State University, [2] and currently overseen by Jeffrey Barrick at the University of Texas at Austin. [3]