WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    K is the logistic growth rate or steepness of the curve [19] and = / The logistic growth curve depicts how population growth rate and carrying capacity are inter-connected. As illustrated in the logistic growth curve model, when the population size is small, the population increases exponentially.

  3. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    The van Genuchten–Gupta model is based on an inverted S-curve and applied to the response of crop yield to soil salinity. Examples of the application of the logistic S-curve to the response of crop yield (wheat) to both the soil salinity and depth to water table in the soil are shown in modeling crop response in agriculture.

  4. Ricker model - Wikipedia

    en.wikipedia.org/wiki/Ricker_model

    Here r is interpreted as an intrinsic growth rate and k as the carrying capacity of the environment. Unlike some other models like the Logistic map , the carrying capacity in the Ricker model is not a hard barrier that cannot be exceeded by the population, but it only determines the overall scale of the population.

  5. Intraspecific competition - Wikipedia

    en.wikipedia.org/wiki/Intraspecific_competition

    The logistic growth curve is initially very similar to the exponential growth curve. When population density is low, individuals are free from competition and can grow rapidly. However, as the population reaches its maximum (the carrying capacity), intraspecific competition becomes fiercer and the per capita growth rate slows until the ...

  6. Population dynamics - Wikipedia

    en.wikipedia.org/wiki/Population_dynamics

    In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...

  7. Pierre François Verhulst - Wikipedia

    en.wikipedia.org/wiki/Pierre_François_Verhulst

    Verhulst developed the logistic function in a series of three papers between 1838 and 1847, based on research on modeling population growth that he conducted in the mid 1830s, under the guidance of Adolphe Quetelet; see Logistic function § History for details. [1] Verhulst published in Verhulst (1838) the equation:

  8. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey.

  9. Allee effect - Wikipedia

    en.wikipedia.org/wiki/Allee_effect

    After dividing both sides of the equation by the population size N, in the logistic growth the left hand side of the equation represents the per capita population growth rate, which is dependent on the population size N, and decreases with increasing N throughout the entire range of population sizes.