WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.

  3. Bacterial growth - Wikipedia

    en.wikipedia.org/wiki/Bacterial_growth

    Bacterial growth. Growth is shown as L = log (numbers) where numbers is the number of colony forming units per ml, versus T (time.) Bacterial growth is proliferation of bacterium into two daughter cells, in a process called binary fission. Providing no mutation event occurs, the resulting daughter cells are genetically identical to the original ...

  4. Monod equation - Wikipedia

    en.wikipedia.org/wiki/Monod_equation

    The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting nutrient. [1][2][3 ...

  5. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Exponential growth is the inverse of logarithmic growth. Not all cases of growth at an always increasing rate are instances of exponential growth. For example the function grows at an ever increasing rate, but is very remote from growing exponentially. For example, when it grows at 3 times its size, but when it grows at 30% of its size.

  6. Fermentation - Wikipedia

    en.wikipedia.org/wiki/Fermentation

    There is a lag phase in which cells adjust to their environment; then a phase in which exponential growth occurs. Once many of the nutrients have been consumed, the growth slows and becomes non-exponential, but production of secondary metabolites (including commercially important antibiotics and enzymes) accelerates. This continues through a ...

  7. Mathematical modelling of infectious diseases - Wikipedia

    en.wikipedia.org/wiki/Mathematical_modelling_of...

    Mathematical models can project how infectious diseases progress to show the likely outcome of an epidemic (including in plants) and help inform public health and plant health interventions. Models use basic assumptions or collected statistics along with mathematics to find parameters for various infectious diseases and use those parameters to ...

  8. E. coli long-term evolution experiment - Wikipedia

    en.wikipedia.org/wiki/E._coli_long-term...

    The 12 E. coli LTEE populations on June 25, 2008. [1]The E. coli long-term evolution experiment (LTEE) is an ongoing study in experimental evolution begun by Richard Lenski at the University of California, Irvine, carried on by Lenski and colleagues at Michigan State University, [2] and currently overseen by Jeffrey Barrick at the University of Texas at Austin. [3]

  9. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is. . If the RGR is constant, i.e., , a solution to this equation is.