WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    A logistic function or logistic curve is a common S-shaped curve ( sigmoid curve) with the equation. where. , the value of the function's midpoint; , the supremum of the values of the function; , the logistic growth rate or steepness of the curve. [1] Standard logistic function where. For values of in the domain of real numbers from to , the S ...

  3. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    Here x is the size of the population at a given time, r is inherent per-capita growth rate, and K is the carrying capacity. Two species. Given two populations, x 1 and x 2, with logistic dynamics, the Lotka–Volterra formulation adds an additional term to account for the species' interactions. Thus the competitive Lotka–Volterra equations are:

  4. Von Bertalanffy function - Wikipedia

    en.wikipedia.org/wiki/Von_Bertalanffy_function

    The von Bertalanffy growth function ( VBGF ), or von Bertalanffy curve, is a type of growth curve for a time series and is named after Ludwig von Bertalanffy. It is a special case of the generalised logistic function. The growth curve is used to model mean length from age in animals. [1] The function is commonly applied in ecology to model fish ...

  5. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of the earliest and most ...

  6. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear [disambiguation needed] differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time ...

  7. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    The logistic growth curve depicts how population growth rate and carrying capacity are inter-connected. As illustrated in the logistic growth curve model, when the population size is small, the population increases exponentially. However, as population size nears carrying capacity, the growth decreases and reaches zero at K.

  8. Maximum sustainable yield - Wikipedia

    en.wikipedia.org/wiki/Maximum_sustainable_yield

    In population ecology and economics, optimum sustainable yield is the level of effort (LOE) that maximizes the difference between total revenue and total cost. Or, where marginal revenue equals marginal cost. This level of effort maximizes the economic profit, or rent, of the resource being utilized. It usually corresponds to an effort level ...

  9. Beverton–Holt model - Wikipedia

    en.wikipedia.org/wiki/Beverton–Holt_model

    Beverton–Holt model. The Beverton–Holt model is a classic discrete-time population model which gives the expected number n t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, Here R0 is interpreted as the proliferation rate per generation and K = ( R0 − 1) M is the ...