WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    Definition. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stressstrain curves. The stress and strain can be normal, shear, or mixture, and can also can be uniaxial, biaxial, or multiaxial, even change with time. The form of deformation can be compression ...

  3. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_analysis

    Stressstrain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  4. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    Mohr's circles for a three-dimensional state of stress. Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor . Mohr's circle is often used in calculations relating to mechanical engineering for materials' strength, geotechnical engineering for strength of soils, and structural ...

  5. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0. Work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.

  6. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    Ramberg–Osgood relationship. The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain —that is, the stressstrain curve —in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic ...

  7. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    Yield (engineering) In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed.

  8. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Deformation (engineering) Compressive stress results in deformation which shortens the object but also expands it outwards. In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an ...

  9. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The reversal point is the maximum stress on the engineering stressstrain curve, and the engineering stress coordinate of this point is the ultimate tensile strength, given by point 1. Ultimate tensile strength is not used in the design of ductile static members because design practices dictate the use of the yield stress. It is, however ...