WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. It follows that.

  3. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    Romberg's method. In numerical analysis, Romberg's method[1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally ...

  4. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    Heun's method. In mathematics and computational science, Heun's method may refer to the improved[1] or modified Euler's method (that is, the explicit trapezoidal rule[2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial ...

  5. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    Trapezoidal rule (differential equations) In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method ...

  6. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    t. e. In numerical analysis, the Runge–Kutta methods (English: / ˈrʊŋəˈkʊtɑː / ⓘ RUUNG-ə-KUUT-tah[1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  7. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    Runge–Kutta methods are methods for the numerical solution of the ordinary differential equation. Explicit Runge–Kutta methods take the form. Stages for implicit methods of s stages take the more general form, with the solution to be found over all s. Each method listed on this page is defined by its Butcher tableau, which puts the ...

  8. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    Upper and lower methods make the approximation using the largest and smallest endpoint values of each subinterval, respectively. The values of the sums converge as the subintervals halve from top-left to bottom-right. In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum.

  9. Newmark-beta method - Wikipedia

    en.wikipedia.org/wiki/Newmark-beta_method

    The Newmark-beta method is a method of numerical integration used to solve certain differential equations. It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems. The method is named after Nathan M. Newmark, [1] former Professor of Civil Engineering ...