WOW.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Exponential growth. Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential ...

  3. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of the earliest and most ...

  4. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is. If the RGR is constant, i.e., a solution to this equation is.

  5. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    The equivalent concept to doubling time for a material undergoing a constant negative relative growth rate or exponential decay is the half-life. The equivalent concept in base- e is e -folding . Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/ t and 72/ t approximations.

  6. Rule of 72 - Wikipedia

    en.wikipedia.org/wiki/Rule_of_72

    To estimate the number of periods required to double an original investment, divide the most convenient "rule-quantity" by the expected growth rate, expressed as a percentage. For instance, if you were to invest $100 with compounding interest at a rate of 9% per annum, the rule of 72 gives 72/9 = 8 years required for the investment to be worth ...

  7. Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Lotka–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear [disambiguation needed] differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time ...

  8. Compound annual growth rate - Wikipedia

    en.wikipedia.org/wiki/Compound_annual_growth_rate

    Compound annual growth rate ( CAGR) is a business, economics and investing term representing the mean annualized growth rate for compounding values over a given time period. [1] [2] CAGR smoothes the effect of volatility of periodic values that can render arithmetic means less meaningful. It is particularly useful to compare growth rates of ...

  9. Harrod–Domar model - Wikipedia

    en.wikipedia.org/wiki/Harrod–Domar_model

    The Harrod–Domar model makes the following a priori assumptions: 1: Output is a function of capital stock only (labor is irrelevant). 2: The marginal product of capital is constant; the production function exhibits constant returns to scale. This implies capital's marginal and average products are equal. 3: Capital is necessary for output.