# WOW.com Web Search

## Search results

2. ### Relative growth rate - Wikipedia

en.wikipedia.org/wiki/Relative_growth_rate

RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is. If the RGR is constant, i.e., a solution to this equation is.

3. ### Bateman equation - Wikipedia

en.wikipedia.org/wiki/Bateman_equation

In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

4. ### Rule of 72 - Wikipedia

en.wikipedia.org/wiki/Rule_of_72

In finance, the rule of 72, the rule of 70 [1] and the rule of 69.3 are methods for estimating an investment 's doubling time. The rule number (e.g., 72) is divided by the interest percentage per period (usually years) to obtain the approximate number of periods required for doubling. Although scientific calculators and spreadsheet programs ...

5. ### Exponential growth - Wikipedia

en.wikipedia.org/wiki/Exponential_growth

Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time ...

6. ### Doubling time - Wikipedia

en.wikipedia.org/wiki/Doubling_time

The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life. As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years.

7. ### Euler–Lotka equation - Wikipedia

en.wikipedia.org/wiki/Euler–Lotka_equation

The Euler–Lotka equation, derived and discussed below, is often attributed to either of its origins: Euler, who derived a special form in 1760, or Lotka, who derived a more general continuous version. The equation in discrete time is given by. where is the discrete growth rate, ℓ ( a) is the fraction of individuals surviving to age a and b ...

8. ### Monod equation - Wikipedia

en.wikipedia.org/wiki/Monod_equation

Monod equation. The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting ...

9. ### Exponential decay - Wikipedia

en.wikipedia.org/wiki/Exponential_decay

Exponential decay. A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant ( λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.