Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bateman equation - Wikipedia

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  3. Exponential decay - Wikipedia

    Exponential decay. A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant ( λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.

  4. Relative growth rate - Wikipedia

    RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is. . If the RGR is constant, i.e., , a solution to this equation is.

  5. Exponential growth - Wikipedia

    Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time ...

  6. Malthusian growth model - Wikipedia

    A Malthusian growth model, sometimes called a simple exponential growth model, is essentially exponential growth based on the idea of the function being proportional to the speed to which the function grows. The model is named after Thomas Robert Malthus, who wrote An Essay on the Principle of Population (1798), one of the earliest and most ...

  7. Rule of 72 - Wikipedia

    In finance, the rule of 72, the rule of 70 [1] and the rule of 69.3 are methods for estimating an investment 's doubling time. The rule number (e.g., 72) is divided by the interest percentage per period (usually years) to obtain the approximate number of periods required for doubling. Although scientific calculators and spreadsheet programs ...

  8. Lotka–Volterra equations - Wikipedia–Volterra_equations

    The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear [disambiguation needed] differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time ...

  9. Doubling time - Wikipedia

    The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life. As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years.